Circuit breaker pattern
Overview
Assume that an application connects to a database 100 times per second and the database fails. The application designer does not want to have the same error reoccur constantly. They also want to handle the error quickly and gracefully without waiting for TCP connection timeout. Generally Circuit Breaker can be used to check the availability of an external service. An external service can be a database server or a web service used by the application. Circuit breaker detects failures and prevents the application from trying to perform the action that is doomed to fail (until it's safe to retry)
Context and problem
In a distributed environment, calls to remote resources and services can fail due to transient faults, such as slow network connections, timeouts, or the resources being overcommitted or temporarily unavailable. These faults typically correct themselves after a short period of time, and a robust cloud application should be prepared to handle them by using a strategy such as the Retry pattern.
However, there can also be situations where faults are due to unanticipated events, and that might take much longer to fix. These faults can range in severity from a partial loss of connectivity to the complete failure of a service. In these situations it might be pointless for an application to continually retry an operation that is unlikely to succeed, and instead the application should quickly accept that the operation has failed and handle this failure accordingly.
Additionally, if a service is very busy, failure in one part of the system might lead to cascading failures. For example, an operation that invokes a service could be configured to implement a timeout, and reply with a failure message if the service fails to respond within this period. However, this strategy could cause many concurrent requests to the same operation to be blocked until the timeout period expires. These blocked requests might hold critical system resources such as memory, threads, database connections, and so on. Consequently, these resources could become exhausted, causing failure of other possibly unrelated parts of the system that need to use the same resources. In these situations, it would be preferable for the operation to fail immediately, and only attempt to invoke the service if it's likely to succeed. Note that setting a shorter timeout might help to resolve this problem, but the timeout shouldn't be so short that the operation fails most of the time, even if the request to the service would eventually succeed.
Solution
The Circuit Breaker pattern, popularized by Michael Nygard in his book, Release It!, can prevent an application from repeatedly trying to execute an operation that's likely to fail. Allowing it to continue without waiting for the fault to be fixed or wasting CPU cycles while it determines that the fault is long lasting. The Circuit Breaker pattern also enables an application to detect whether the fault has been resolved. If the problem appears to have been fixed, the application can try to invoke the operation.
The purpose of the Circuit Breaker pattern is different than the Retry pattern. The Retry pattern enables an application to retry an operation in the expectation that it'll succeed. The Circuit Breaker pattern prevents an application from performing an operation that is likely to fail. An application can combine these two patterns by using the Retry pattern to invoke an operation through a circuit breaker. However, the retry logic should be sensitive to any exceptions returned by the circuit breaker and abandon retry attempts if the circuit breaker indicates that a fault is not transient.
A circuit breaker acts as a proxy for operations that might fail. The proxy should monitor the number of recent failures that have occurred, and use this information to decide whether to allow the operation to proceed, or simply return an exception immediately.
The proxy can be implemented as a state machine with the following states that mimic the functionality of an electrical circuit breaker:
- Closed: When everything is normal, the circuit breakers remained closed, and all the request passes through to the services as shown below. If the number of failures increases beyond the threshold, the circuit breaker trips and goes into an open state.
- Open:In this state circuit breaker returns an error immediately without even invoking the services. The Circuit breakers move into the half-open state after a timeout period elapses. Usually, it will have a monitoring system where the timeout will be specified.
- Half-Open:In this state, the circuit breaker allows a limited number of requests from the Microservice to passthrough and invoke the operation. If the requests are successful, then the circuit breaker will go to the closed state. However, if the requests continue to fail, then it goes back to Open state.
In the figure, the failure counter used by the Closed state is time based. It's automatically reset at periodic intervals. This helps to prevent the circuit breaker from entering the Open state if it experiences occasional failures. The failure threshold that trips the circuit breaker into the Open state is only reached when a specified number of failures have occurred during a specified interval. The counter used by the Half-Open state records the number of successful attempts to invoke the operation. The circuit breaker reverts to the Closed state after a specified number of consecutive operation invocations have been successful. If any invocation fails, the circuit breaker enters the Open state immediately and the success counter will be reset the next time it enters the Half-Open state.
The Circuit Breaker pattern provides stability while the system recovers from a failure and minimizes the impact on performance. It can help to maintain the response time of the system by quickly rejecting a request for an operation that's likely to fail, rather than waiting for the operation to time out, or never return. If the circuit breaker raises an event each time it changes state, this information can be used to monitor the health of the part of the system protected by the circuit breaker, or to alert an administrator when a circuit breaker trips to the Open state.
The pattern is customizable and can be adapted according to the type of the possible failure. For example, you can apply an increasing timeout timer to a circuit breaker. You could place the circuit breaker in the Open state for a few seconds initially, and then if the failure hasn't been resolved increase the timeout to a few minutes, and so on. In some cases, rather than the Open state returning failure and raising an exception, it could be useful to return a default value that is meaningful to the application.